ON RAMANUJAN ’ S CONTINUED FRACTION FOR ( q 2 ; q 3 ) ∞ / ( q ; q 3 ) ∞
نویسندگان
چکیده
The continued fraction in the title is perhaps the deepest of Ramanujan’s q-continued fractions. We give a new proof of this continued fraction, more elementary and shorter than the only known proof by Andrews, Berndt, Jacobsen, and Lamphere. On page 45 in his lost notebook, Ramanujan states an asymptotic formula for a continued fraction generalizing that in the title. The second main goal of this paper is to prove this asymptotic formula.
منابع مشابه
Factorizations that Involve Ramanujan ’ s Function k ( q ) = r ( q )
In the “lost notebook”, Ramanujan recorded infinite product expansions for 1 √ r − ( 1−√5 2 )√ r and 1 √ r − ( 1 + √ 5 2 )√ r, where r = r(q) is the Rogers–Ramanujan continued fraction. We shall give analogues of these results that involve Ramanujan’s function k = k(q) = r(q)r(q).
متن کاملON THE DIVERGENCE IN THE GENERAL SENSE OF q-CONTINUED FRACTION ON THE UNIT CIRCLE
We show, for each q-continued fraction G(q) in a certain class of continued fractions, that there is an uncountable set of points on the unit circle at which G(q) diverges in the general sense. This class includes the Rogers-Ramanujan continued fraction and the three Ramanujan-Selberg continued fraction. We discuss the implications of our theorems for the general convergence of other q-continue...
متن کاملParametric Evaluations of the Rogers-Ramanujan Continued Fraction
In this paper with the help of the inverse function of the singular moduli we evaluate the Rogers-Ranmanujan continued fraction and its first derivative. 1 q 1 1 q 2 1 q 3 1 · · ·. 1.1 We also define a; q n : n−1 k0 1 − aq k , f −q : ∞ n1 1 − q n q; q ∞ .
متن کاملRamanujan’s Cubic Continued Fraction and Ramanujan Type Congruences for a Certain Partition Function
In this paper, we study the divisibility of the function a(n) defined by ∑ n≥0 a(n)q n := (q; q)−1 ∞ (q ; q2)−1 ∞ . In particular, we prove certain “Ramanujan type congruences” for a(n) modulo powers of 3.
متن کاملTHE SIZE OF (q; q)n FOR q ON THE UNIT CIRCLE
There is increasing interest in q series with jqj = 1. In analysis of these, an important role is played by the behaviour as n!1 of (q; q)n = (1 q)(1 q):::(1 q): We show, for example, that for almost all q on the unit circle log j(q; q)nj = O(logn) i¤ " > 0. Moreover, if q = exp(2 i ) where the continued fraction of has bounded partial quotients, then the above relation is valid with " = 0. Thi...
متن کامل